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The method of large h [l]. when the solution of the integral equations is represen- 
ted as an asymptotic expansion in negative powers of some dimensionless parame- 
ter 1 is used extensively, among the asymptotic methods of investigating the in- 
tegral equations of the theory of mixed problems. As a rule only several terms of 

such an asymptotic expansion are constructed successfully. 
Certain types of integral equations of the second kind, for which a method is 

proposed for the construction of all terms of the asymptotic expansion, are investi- 

gated below by the method of large h. The coefficients and expansions of the re- 
quired solution in negative powers of & are represented as polynomials in the main 
argument and recursion formulas are obtained for the coefficients of these polyno- 
mials, Considered as examples are the axisymmetric mixed nonstationary problem 
of heat conduction for a homogeneous half-space and the axisymmetric problem 
of elasticity theory for the torsion of a truncated sphere by a press. 

1. Solution of the fntrgrrl oqurtton, We examine the equation 
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M (y) = 111 - L (u)] cm uy du = $j b, I Y Ik (IYI<B< 4 (1.2) 
l O k=o 

where 0 < li. < ~3 is a dimensionless parameter, g (t) is a known function. The series 
(1.2) converge uniformly for 1 y ) < B < CO (B is an arbitrarily large number). 

We seek the solution of the integral equation (1.1) with kernel (1.2) in the form [Z] 
cm 

(1.3) 

Substi~~ng (1.3) and the series (1.2) into (1.1) and equating coefficients of identical 

powers of h, we obtain the fo~o~ng recursion relations to determine q~* (I) 

‘p* (If = f: 6i1, rp,_i_,(t)jt--2.Jidz (n==1,2,...), 9 V) = g (9 (1.4) 
{X=0 

We assume that g (t) = 1. Then seeking q+, (b) in the form 
Pm 

ql,(l)== x q,,;P (n=1,2,...) (1.5) 
i=o 

(here and henceforth the square brackets in the limits of the summation denote the in- 

teger part of the number). 

By substi~t~g (1.5) into (1.4) and equating coefficients in identical powers of P in 
the ~latio~hip obtained, we find recursion formulas to determine 

+ (1.6) 

(1.7) 

P=O 

is even ; n is even in (1.3). 

A solution of (1.1) and (1.2) can be constructed in similar manner for large h, in the 
case when g (t) = tm (m is any natural number) as well as in the case when g (0 is re- 

presentable as a series in powers of the argument t. 
Theorem 1. If g(t) E Hl”‘(--1,1) and the inequality 

js. > h” = n-1 [Zbo* +dl + I/(& + 2h*)= + =%a 1 (1.9) 
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is valid, then the solution of the integral equation (1.1) with the kernel (1.2) exists in 

the class HI"~ (- 1,1) , is unique, and can be obtained by the method of large A. 
Here Er”* (- 2,1) is the space of functions whose first derivative satisfies the H’dlder 

condition with exponent “/z on the segment f-*7I). 

If 
,z1 (,v) :- i Q/2!& (I Y 1 < YO) (1. 10) 

7I==!) 

in the integral equation (1. I), then analogously to the preceding, the solution of (1.1) 

with the kernel (1.10) and right side (1.U) can be represented for large values of h as 

rp (*) _I- i ;L-G +& Dj: t2+ -i_ 2 ~-(zhl) i By, tzi (1.12) 

j-_& i c-0 j_ze i=l@ 

where aji met @ji are determined from the fallowing ZWXW~QR relations: 

(i = 0,l ,...,i-- 1) (1.13) 

"jj = llj 

2, Mixed problam of hart ccnductfon, hetusexamine the axtsymmetric 
problem of heat conduction for a homogeneous half-space, when the tem~rature 

‘r (r, 0, t) = TOP (T, = con&, w == co?&) (2.1) 

varying in a time t is given on the boundary in a circle of radius Q , while there is no 
heat exchange on the rest of the surface. 

The problem of determining the axisymmetric temperature field in cylindrical coor- 

dinates T fr, z, E) in this case (we consider the process steady) is equivalent [Z, 31 tothe 
integral equation fl_ l)* (L2) under the condition g (t) = 1, 

L (26) = U [G + (I + i)V’** h = @z(a IQ-)-l (2.2) 

b 

b 
Tc tk+l 

aktl = - 2%I (k + I)! * 
&0=-((1+ij (k= O,i,...) 

(2.3) 

(x is the coefficient of heat conduction). 
Therefore, according to Sect. 1, the solution of the integral equation for the problem 

is representable as (1.3), (1.5) for the case of large X where T&~ are determined from 
the recur&n refations (2.6) - (1.8). 
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The magnitude of the total heat flux passing through the boundary of the half-space 
within the circle r < a is determined for large I by the formula 

Q = 4aToxoe tot (N - co) (2.4) 
n=o LO 

The solution of the problem posed here can also be obtained by the method of small 
h elucidated in [2]. For small h we have 

q(t)=aToqF(F)f (-&$), ~(z)==U(---~,l:-2i~) (2.5) 

Q = naToxoe id ( l+i 
I + h ) (2.6) 

(@ t--‘/e, 1; - 2~) is the degenerate hypergeometric functionj. We introduce the quan- 

tities &and Qz by means of the formula 

QI + i Qz = Q (aTox$h emiot 
(2.7) 

Results of numerical computations of the quantities Q1 and Qz for various values of 
the parameter h, computed by the method of large a by means of (2.4) and (2.7) (co- 

lumns 2 and 3) are presented in Table 1, where all the numbers presented are exact, 

and by the method of small h by means of formulas (2.6) and (2.7) (columns 4 and 5). 

Table 1 

h 1 QI / Qz / QI 1 QI 1 h 1 91 1 Qz 1 QI 1 Qt 

0.80 6.9244 3.9943 7.0686 3.9270 1.00 6.4876 3.0003 6.2832 3.1416 
0.85 6.8172 3.6778 6.8376 3.6960 1.50 5.7070 1.8996 5.2360 2.0944 
0.90 6.7054 3.4151 6.6323 3.4907 2.00 5.2828 1.5728 4.7124 1.5708 
0.95 6.5946 3.1924 6.4485 3.3069 

As is seen from Table 1, the results of the method are in good agreement and permit 
making the deduction that the method of small h should be used for the solution for 

h < 0.8 and the method of large A for h > 0.8 . 
Note that the relative error is 0.001% for h = 0.8 in the calculation of the quantities 

Q by the method of large h if N = 25 in (2.4), i.e. if 25 terms of the series in b are 

retained in (2.4),if N = 10 for h = 1.3, and if N = 4 for h = 2.5. 

3, Torrion of a truncated rphoro by a prom Let usconsider the axi- 
symmetric problem of elasticity theory concerning the torsion of a truncated sphere 

clamped rigidly to its plane boundary by a circular cylindrical press. We hence consider 

the spherical part of the sphere surface fixed. 

This problem has been examined in [4, 53, where it was reduced to an integral equa- 
tion of the second kind whose solution was not constited. An approximate (closed) 
solution of the problem has been constructed in [2] on the basis of a special approxima- 
tion of the kernel of the integral equation, and its asymptotic solution has been construc- 
ted in [S] in the case when the radius of the press is close to the radius of truncation. 

An “exact” solution of the problem will be constructed below by the method eluci- 
dated in Sect. 1 for the case when the radius of the press is sufficiently smaller than the 
radius of the sphere truncated section. 
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The problem posed (23 can be reduced to the integral equation (1.1) with the kernel 
(3. 1) and the right side of (3.2) (c is a constant determined from the condition q)(l)-0) 

M (y) = 1 [I - th JIU th ru] cos uy du 

0 

g(f)--;+h & @ch-I& 

1 
h = 2Arth + = a0, 

(3.1) 

(3.2) 

Here Y E f0, nl is a parameter charac~~zing the degree of ~ca~on of the sphere, 

of is the radius of the press, b is the ~ncation radius, and R is the radius of the sphere. 
The kernel (3.1) in the right side of (3.2) can be expanded in the series (1.10) and 

(1. ll), respectively, where m 

b = l--Y -- 
n (2nY s [I--hnuthyu] u2”du 

0 

an = coa,* - a,**, a0 = + l/r 

(3.3) 

Therefore, in the caSe of large values of h the solution of the integral equation (1.1) 
with the kernel (3.1) and right side (3.2) is representable as (1.12) and (1.13) under the 
condition (3.3). 

We introduce the notation 
cp (t) = co cp * (4 - cp** (t) 

which is related in a natural manner to the representation of the right side (3.2) of the 
integral equation, Then from the condition ‘p (1) = 0 

C@ = q** (1) [cp* (111-l 

For convenience in the numerical determination of the magnitude of the shear stresses 
under the press [Z] by the method of large a , let us represent them as 

Here cx = Arth fr ! b) (r is the distance between points of the-half-space and the axis 

of symme~), G is the shear modulus, and F is the angle of press rotation. 
The connection between the moment M acting on the press and the angle of stamp 

rotation e for large h is determined by the relationship 
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Values of the dimensionless quantity 

r* = rvz (r, 0) (Ga)-’ 

computed on an electronic digital computer by formulas (3.4), (1.12) and (1.13) to 
0. Ol.$ accuracy, are presented in Table 2 for different y and h 

Table 2 

Y 

x 

2 

x 
z 

1 

0.5 

-t- 

0.1 
0.5 
0.7 

0.1 
0.5 
0.7 

0.i 
0.5 
0.7 

0.1 
0.5 

0.1 
0.3 

‘i- 
0.i 0.3 0.5 

- 

I - 0.7 
I 

0.9 

0.1280 0.4605 0.7352 1.248 
0.1308 0.4094 0.7521 1.279 
0.1356 0.4252 0.7840 1.341 

0.1280 0.4005 0.7353 1.248 
0.1326 0.4152 0.7628 1.297 
0.14it 0.4425 0.8163 1.397 

0.1280 0.4006 0.7354 1.249 
0.1350 0.4224 0.7758 1.318 
0.1447 0.4529 0.8329 1.426 

0.1281 0.4009 0.7359 1.249 
0.1456 0.4545 0.8303 1,401 

0.1287 0.4028 0.7394 1.255 
0.1509 0.4692 0.8507 1.418 

r/b 

2.629 
2.698 
2.864 

2.630 
2.737 
2.985 

2,630 
2.779 
3.191 

2.632 
2.949 

2.644 
2.921 

If p denotes the shortest distance between points of the press for r = a to the fixed 
spherical boundary of the sphere, then as computations show, the method of large I yields 

a solution of the problem when the ratio p / a is sufficiently large. 
The data in Table 2 are in sufficiently good agreement with the corresponding results 

presented in the tables of [Z, 61 for this problem. 

The author is grateful to V. M. Aleksandrov for his attention to this research. 
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Determination of the form of equal strength hole contours in a perforated plane under a 

specified load, i, e, the inverse problem, was formulated and solved with sufficient degree 
ofgenerality by Cherepanov Il. 21 who reduced it to the Dirichlet problem for the exter- 
ior of a system of parallel slits in a plane,in the class of functions with power singular- 
ities at the ends of the slits. and a closed solution was obtained in a number of cases. In 

the present paper the initial problem for an arbitrary* finitely connected region is reduced 
to a Fredbolm-type equation relative to the density of integral representation of the func- 

tion which maps conformally a plane with circles excluded, onto a plane of the same 

connectivity with an unknown boundary. The equation obtained is solved by the method 

of least squares arrd this leads, in the case of any finitely connected region, to an unique 
computational scheme which can be programed into a computer. The coefficients of the 

corresponding algebraic system are determined and a one-parameter family of the con- 
tours sought is con&ructed for a plane, symmetrically periodic distribution of holes, as 
an example. 

As we know [3”Jt a canonical domain obtained from the $,-plane by removing n circb~, 
can be mapped onto any n-connected domain 8+ of the complex z-plane with a point 

at infinit)r. When n > 2 , the mapping o. (r;) which has the form w, ( 5) = C t -i- w ( 51, 
where o (5) is bounoed at infinity, depends on 3n real parameterss, six of which (e. g. 

one circumference, one fixed point on this circumference and a center of another cir- 

cumference) can be specified arbitrarily, and C is a scale multiplier, Consequently, a 

system of contours of equal strength, if it exists, forms a (3n - Gf-parameter family. 

The limits of variation of the parameters can be found from geometrical considerations, 
The presence of symmetry may lead to reduction in the number of parameters. 

We have the following relations [4] for determining the stress components at the bonn- 

dary I? of the region S, : 
‘b + ue = 4Re@, (r$ 

2 (5 - a$ 
% -oPf 2it,= 

r&am 
(T(4) cho’ (U f wo’ (41 T@ (4)) 

Here o,, oe and T,.sdenote the normal and shear stresses in a polar coordinate system 
with a pole at the center a~ of a circle of radius rk and a boundary fk> k = 1, 2, _ 1 ., R. 

ff a homogeneous,sta~ of stress with the stress components oX$ oY and tXB is given at 
infinity, then mpo (t;) and yf, f 5) have the form [4] 


